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Abstract — We present the design of an optimized CUDA 
Library used in T2OURNAMINT, an Electronic Warfare testing 
system designed to support many-on-many, hardware-in-the-loop 
test capabilities. The CUDA library was designed to handle the 
processing of environmental effects such as secondary target 
injection, clutter modeling, and receiver thermal noise.  
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I. INTRODUCTION 
T2OURNAMINT, which stands for Testing Theater 

Operations Using Real-time Networks Achieving Multiple 
Interconnected Nodal Tactics, is a real-time environment 
simulator for many-on-many, hardware-in-the-loop electronic 
warfare (EW) testing. T2OURNAMINT has been designed and 
developed at MIT Lincoln Laboratory and is envisioned to be 
the central link between multiple hardware-in-the-loop 
emulators and test chambers at the NAVAIR facility.  

A realistic EW testing system needs to be able to manage, 
model, and represent a large number of environmental and 
system interactions. Those interactions include primary and 
secondary interactions. Primary interactions are those occurring 
between key systems under test, such as the emulation of radars 
tracking the trajectory of potential threats and the response of 
those threats to the radar signals. These interactions are expected 
to be small in number (tens of hardware systems) and require 
high fidelity hardware processing. Secondary interactions are 
what we will call environmental interactions that affect and 
impact the systems under test. These interactions include, but 
are not limited to, the simulation of additional non-threatening 
targets, clutter effects, and receiver limitations. In general, 
secondary types of interactions are those that are large in number 
(hundreds of objects and/or distributed responses in range) and 
require fast processing that can be performed at the software 
level. This paper focuses on how we manage the secondary types 
of interactions within T2OURNAMINT. To achieve high 
performance and realize acceptable processing speeds we 
leverage the use of an accelerator, the NVIDIA Tesla K40 
graphics processing unit (GPU), programmed via the use of 
NVIDIA’s Compute Unified Architecture (CUDA) API. In 
efforts to keep the accelerator support transferable to other 
projects and effortless in its usage, the functionality was built as 
a library.  

II. GPU SUPPORT FOR T2OURNAMINT 
 The GPU’s role in T2OURNAMINT is to transform an 
incoming signal in a way that reflects specified environmental 

effects for a given test sensor and test scenario. Environmental 
effects supported are secondary targets, clutter distributions, 
and receiver noise modeling. After such effects are computed 
based on the original signal, the resulting signal is sent back to 
the T2OURNAMINT software for further routing.   
 As shown in Figure 1, the GPU’s role is to generate an 
IQ uncompressed response that is representative of the 
specified environment. To do this, the controlling software 
sends target descriptors to the GPU specifying target positions 
and gains. The GPU then converts these descriptors into target 
range profiles. If clutter is to be injected, relevant clutter 
parameters that describe the type of clutter, clutter distribution 
within a patch and wind speeds are also sent to the GPU for the 
generation of a clutter model. (The clutter model currently 
supported on T2OURNAMINT is a simplified version of the 
Land Clutter model proposed by Billingsley [1]). Once clutter 
effects and target effects have been combined, they are 
convolved with the transmit waveform on a pulse-by-pulse 
basis to distribute the energy of the original signal in time based 
on the given environment. In order to match processing gains 
within the T2OURNAMINT hardware, amplitude scaling must 
be applied to the convolved signal. As a last step a 
representation of thermal noise at the receiver following a 
White Gaussian Noise Distribution is injected into the signal.  

 
Figure 1: GPU IQ Signal Processing Flow 

III. CUDA-GPU  
 
GPU Architecture 
 GPUs were originally designed to efficiently handle 
graphics rendering applications. Such applications are 
characterized as being compute intensive and highly parallel. 
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Based on these features, GPUs have devoted more transistors 
for data processing as compared to CPUs, which have devoted 
more transistors for control logic. This leads to GPUs being 
characterized as a “many-core” chip, which means that the 
number of cores it contains is on the order of hundreds or 
thousands. CPUs on the other hand are “multi-core” chips; 
characterized by having a lower number of cores, usually on the 
order of tens, at most (see Figure 2). This design makes the 
GPUs more suitable to address problems that can be expressed 
as data or task parallel whereas CPUs are more suitable to 
address sequential computation. To realize the highest 
performance attainable for a given application we recommend 
the use of both, a powerful CPU to handle control and 
sequential processing along with a powerful GPU to process 

highly parallel compute intensive portions of the code. 
 
Figure 2: Multi-core vs. Many-core. 

 GPUs have a hierarchical architecture in terms of 
processors, threads, and memory. These are briefly discussed 
next 
 
Processor Hierarchy  
 TheTesla Kepler architecture of contains at most 2880 
core processors organized as 15 Streaming Multiprocessors 
(SMX). Each SMX contains 192 single-precision CUDA cores, 
64 double-precision units, 32 special function units (SFU) for 
transcendental operations, 64 KB for shared memory and L1 
cache, and 48 KB of read only data cache. Each multiprocessor 
performs computation following the Single Instruction 
Multiple Thread (SIMT) model, which is similar to the Single 
Instruction Multiple Data (SIMD) model with the difference 
being that each SIMT thread is executed independently with its 
own instruction address and register state. Threads are grouped 
into thread blocks, which get further assigned to an SMX [2].  
 
Thread Hierarchy 
 Threads, grouped into thread blocks, can be organized 
in a one, two, or three-dimensional alignment. There are 
limitations on the maximum number of threads that a block can 
have, as all threads within a block are expected to reside in the 
same SMX and must share limited resources. (The CUDA 
programmer needs to be aware of and take into account such 

limitations.) Blocks are further organized in a one or two-
dimensional grid. The number of thread blocks within a grid is 
usually dictated by the size of the data being processed or by 
hardware limitations of the particular GPU card.  

 
Memory Hierarchy 
 During execution CUDA threads access data via 
multiple memory spaces. All threads have access to Global 
Memory, which is off-chip, uncached and has high latency. The 
lifetime of global memory is the lifetime of the application 
(unless memory is explicitly de-allocated within the 
application). The next memory level is Shared Memory. Shared 
Memory is a low latency on-chip memory, smaller in size 
compared to global memory, and software managed, meaning 
that the programmer must explicitly move data in and out of 
this store. For the Kepler line, the programmer has the option to 
configure the 64 KB of available memory as a combination of 
48 KB/16 KB, 32 KB/32 KB, or 16 KB/48 KB of Shared 
Memory and L1-Cache, respectively. Kepler also has 48 KB of 
Read-Only-Cache whose lifetime is the duration of the 
function. In addition to this, Kepler has an improved L2 cache, 
key for optimal data sharing across the GPU. Figure 3 shows a 
summary of the memory hierarchy in the Kepler architecture 
[2]. 
Figure 3: Kepler's Memory Hierarchy [2] 

CUDA Programming Model  
 CUDA is a scalable parallel programming model 
provided by NVIDIA to exploit the parallel processing power 
of GPUs for non-graphics applications. CUDA is an extension 
of the C/C++ language that supports a heterogeneous 
environment where parallel portions of the application code are 
sent to the GPU device as kernels and remaining portions of 
code are run on the CPU host. Kernels are functions that are 
executed on the GPU by multiple threads. Each kernel call 
launches a grid of thread blocks specified by the CUDA 
programmer. In the CUDA execution model, data are 
transferred from the host to the device, kernel functions get 
executed on the device, and relevant results are transferred back 
to the host. Within a kernel, the CUDA programmer has access 
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to specific blocks and thread via the use of built in CUDA 
variables [3].   
 

IV. CUDA LIBRARY 
 The T2OURNAMINT CUDA Library or T2 CUDA 

Library, for short, is summarized in Figure 4. It contains two 
functions to initialize a CUDA capable GPU device and to 
release its resources at the end of a test. These functions are 
called once during system startup and once during system 
shutdown.  Once the T2 software is ready to start processing the 
first of potentially multiple waveforms, it will call the library 
initialization routine for each waveform to be processed. At this 
time if clutter and noise modeling are required, respective library 
engines are also initialized. 

 
Figure 4: T2OURNAMINT CUDA LIBRARY 

After initialization of the main library there are two levels of 
processing that occur, the frame level and the pulse level. The 
frame level processing latency is limited by the software 
management system, which runs on a Colfax CX1350s-XK6 
with 2 Intel Xeon E5-2600, 10 cores each. The frame processing 
speed that is currently achieved is about 10 ms, limiting the 
frequency at which target positions and gains are being updated 
throughout the test. In the future more effort will be dedicated 
toward optimizing the runtime performance of the frame 
processing; however, for slow moving targets the current frame 
latency is good enough to execute the tests T2OURNAMINT 
was originally designed for. The T2 CUDA Library includes 
functions that are called at the frame level to reset previous target 
range profiles and generate new ones based on the new positions 
and gains.   

On a per-pulse basis we have a different set of limitations 
and constraints. The GPU is receiving waveform data on a pulse-
by-pulse basis at a given rate based on the pulse repetition 
frequency of the radar. It is very important that we minimize or 
avoid dropping pulses, as that would lead to inconsistent system 
under test results. Based on the knowledge of the systems under 
test we expect to have, we have set a latency goal for the GPU 
pulse processing library function to fall within 200 µs. During 
this time the waveform pulse will be sent to the GPU, processed 
on the GPU, and transferred back to the software for further 

routing. We are confident that this speed will support the 
majority of tests that T2OURNAMINT must perform.  

As the pulse processing routine is key in terms of latency and 
performance, effort was put into optimizing such functionality. 
The next section summarizes a set of optimization techniques 
that were successful in achieving the pulse processing 
performance goals. 

 

V. OPTIMIZATIONS AND RESULTS 
Baseline 
 The baseline implementation for T2 CUDA Library 
focused on designing and implementing the library in a way that 
exploits precomputation opportunities and that minimizes 
unnecessary overhead on the pulse-processing routine. This is 
achieved by having an initialization routine called once per 
waveform that allocates required GPU memory, initializes and 
sets up FFT libraries, random number generator engines, and 
clutter and noise models, as well as other precomputed values 
that can be reused or easily transformed on a pulse-by-pulse 
basis.  This library initialization routine is accompanied by a 
de-initialization routine that in turn de-allocates resources 
allocated during the initialization phase.  

        

Pinned Memory 
 One of the first optimizations to implement in CUDA 
code is the use of Pinned Memory. Pinned Memory, also known 
as Non-Pageable memory, is an area of the CPU host DRAM 
that is page-locked and therefore not swapped with secondary 
storage. At user level space, allocated memory is always 
Pageable by default, which provides the user with the notion of 
unlimited DRAM or a Virtual Memory Space. GPU devices are 
not able to access Pageable Memory directly, therefore when 
transferring data to and from the CPU’s paged memory space 
to the GPU’s device memory an intermediate data transfer 
occurs to place the data on the CPU’s Non-Pageable memory 
space, see Figure 5.  

 
Figure 5: Host and Device Data Transfer 

 To decrease data transfer time between CPU and GPU, 
CUDA provides functions to directly allocate CPU host 
memory in pinned memory space. By using such functions at 
the host level, we are able to reduce the data transfers to and 

GPU 
DRAM 

GPU 
DRAM 

Pageable Data Transfer Pinned Data Transfer 

CPU Host 

Pinned 
Memory 

CPU Host 

Pinned 
Memory 

Pageable 
Memory 



from device memory by half, gaining a total speedup of 1.6x on 
the pulse processing routine.  
 
FFT Size Round to Next Power of 2 
 The pulse processing routines require a series of Fast 
Fourier Transforms (FFTs) to be executed. In such cases we 
leverage the use of the cuFFT library included with the 
NVIDIA CUDA toolkit. The cuFFT library provides a simple 
interface to leverage the parallel processing power of GPUs for 
multiple types of FFTs. This library has been highly optimized 
for data sizes that can be written as a combination of the power 
of the first 4 prime numbers (2, 3, 5, 7), with smaller prime 
numbers resulting in better performance [4].  For data sizes that 
can be written as a power of 2, the cuFFT library will provide 
the optimal performance available. By rounding data sizes to 
the next power of 2 we are able to reduce the execution time of 
the FFTs achieving a total accumulated speedup of 1.9x. 
 
Grid Configuration and Padding Optimization 
 We tried out different grid and block configuration 
parameters to find an optimal configuration. For our case 
having 64 threads per thread block gave us the best 
performance. The optimal number of threads per block that will 
provide best performance to a kernel is influenced by the 
amount of resources required for execution such as registers 
and shared memory. Different applications will have different 
optimal thread block sizes.  
 At this stage we also decided to optimize the padding 
approach for the data to be FFT’ed. In previous versions, if 
needed, the padding was done before transferring the data to the 
device, causing the transfer of unnecessary values into the GPU 
card. To improve this approach, we created a kernel that clears 
out the memory on the GPU where the data is to be placed, 
allowing us to only transfer the actual values from the host even 
if padding is required. In this implementation, if padding is 
needed it is already taken care of by the kernel that clears the 
memory before the transfer occurs. The time it takes to clear the 
values on the device memory before the actual transfer is 
insignificant, compared to the time it takes to transfer 
unnecessary values. These optimizations combined, the grid 
configuration changes along with the padding optimization, led 
to an overall accumulated speedup of 2.8x.  
 
Card Upgrade 
 Although design decisions for T2OURNAMINT 
included the use of an NVIDIA Tesla K40 card, the best 
NVIDIA card available at the time for both single and double 
precision performance, we began development with an 
NVIDIA Tesla K20 that was readily available. To show the 
compatibility benefits of using NVIDIA GPU cards as well as 
the automatic performance gains by switching to a newer card 
we included the performance results of doing such an upgrade. 
The card upgrade resulted in a performance gain at the compute 
level as well as at the bandwidth level. A total of 4.5x speedup 
was achieved by the upgrade of the card.  
Stream Support 

 Newer versions of GPU cards and CUDA have the 
capability to run multiple kernels concurrently, providing a 
better way to support task parallelism. The NVIDIA Tesla-
Kepler GPU card along with the CUDA Toolkit 7.5, have 
support for such functionality. This capability to execute 
multiple kernels at the same time is made possible via the use 
of CUDA streams. A CUDA stream contains a series of kernel 
launches or memory transfers that might be dependent on each 
other or need to be synchronized among them. Functions or 
kernels running on different streams have seemingly no 
dependency and can run concurrently. However, if needed, 
synchronization points between multiple streams can also be 
achieved via the use of CUDA events. CUDA events act as a 
lock on the execution of a given stream making the stream wait 
for a particular event to occur on another stream before 
resuming execution. The use of CUDA streams not only allows 
having multiple kernels running concurrently but also aids in 
hiding communication with computation latency, provided it 
has not been fully optimized at this stage. With stream support 
we were able to achieve an overall accumulated speedup of 5.3x 
for blocking calls and 5.8x for non-blocking pulse processing 
calls. 

VI. RESULTS 
 A summary of the optimizations discussed in the 
previous section, further broken down into time spent in data 
transfers versus computation time, can be found in Table 1. As 
mentioned in the introduction, the runtime performance goal for 
the pulse processing routine was 200 μs. By investing time in 
optimizing this routine we were able to decrease the processing 
time from about 1ms down to 178 μs, which gives us a total 
speedup of 5.8x. Results show that we were not only able to 
achieve the runtime performance requirements set out for the 
pulse processing routine but we were also able to exceed them.  

 
Table 1: T2 CUDA Library Optimizations Summary 

VII. FUTURE WORK 
 As future work we recommend the enhancement and 
further optimization of the T2 CUDA Library by using more 
powerful cards. The Titan X, which is currently available in the 
market, although it has a lower double precision performance, 
~0.2 TFLOPS as compared to ~1.43 TFLOPS in the NVIDIA 



Tesla K40, exhibits higher single precision performance, ~7 
TFLOPS compared to ~4 TFLOPS. To avoid losing double 
precision performance, we recommend upgrading to the 
recently announced NVIDIA GTX 1080, the first of the 
NVIDIA cards with the Tesla-Pascal architecture, Tesla P100 
[5]. The card is expected to be available in the summer of 2016. 
The card will have higher throughput and bandwidth than the 
latest Tesla K40 and Titan X and features the new NVLINK 
interconnect that allows faster data transfer rates allowing 
memory bound applications to also benefit from NVIDIA 
GPUs accelerators. 

VIII. SUMMARY 
We have successfully implemented and optimized a CUDA 

library to handle environmental effects in T2OURNAMINT for 
EW testing. We have shown that by dedicating time for 
optimization, the use of NVIDIA GPUs and CUDA are a 
feasible tool in accelerating the performance of an application 
and achieving performance goals in the real-time processing 
domain. With the optimizations presented in this paper we were 
not only able to achieve performance requirements but we were 
able to exceed them. Further performance improvements can be 
achieved by leveraging the latest of NVIDIA GPU cards and 
optimizing for such architectures.  
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